Інститут розведення і генетики тварин УААН

ВПЛИВ БУГАЇВ РІЗНИХ ЛІНІЙ НА ГОСПОДАРСЬКИ КОРИСНІ ОЗНАКИ ДОЧОК

Викладено результати оцінки ефективності використання бугаїв різних генеалогічних ліній та їхній вплив на господарськи корисні ознаки дочок. Установлено, що найбільш перспективними для подальшої селекційної роботи є плідники ліній С.Т.Рокіта, В.Б.Айдіала та А.Адема. Оптимальний вік першого осіменіння становить 528—534 дні.

Лінія, молочна продуктивність, розведення

У сучасній системі великомасці табної селекції використання бугаїв з високою племінною пінністю є найвагомішою склаловою пілвищення генетичного потенціалу продуктивності молочної худоби [1]. На даному етапі розвитку тваринництва необхідно враховувати значну кількість ознак, що впливають на економічну ефективність велення молочного тваринництва. Необхідно продовжувати племінне і виробниче використання тварин, адже нетривале їхнє використання не дає змоги виявити потенційні можливості продуктивності та гальмує подальше їхнє удосконалення. Ефективність велення галузі молочного скотарства значною мірою залежить від тривалості госполарського використання корів та їхньої продуктивності протягом життя [2]. Враховуючи те, що ефективність генетичного прогресу залежить на 90-95% від рівня племінної цінності бугаїв, головним і найбільш ефективним методом у селекційній роботі залишається оцінка їх за якістю нащадків [3–4]. Проте не завжди плідники-поліпшувачі, що походять із видатних ліній, реалізують свій генетичний потенціал в пєвних умовах. При цьому ступінь їхньої реалізації досить різний.

Нами було поставлено завдання провести аналіз ефективності використання плідників та їхнього впливу на господарськи корисні ознаки нашадків, визначивши при цьому кращі лінії для подальшого розведення.

С. В.В. Першута, 2005

^{*} Науковий керівник — доктор сільськогосподарських наук, професор, членкореспондент УААН М.Я. €фіменко.

• М теріал і метолика досліджень. Дослідження проводилися в стаді корів української чорно-рябої молочної породи племзаводу ЗАТ АПК "Зоря" Рівненської області. За ретроспективними даними первинного зоотехнічного і племінного обліку проводили аналіз молочної пролуктивності, вмісту жиру в молоці, тривалості життя та віку першого осіменіння. До вибірки було включено 365 корів, які вибуль із стада після закінчення шонайменше першої лактації. Біометричну обробку експериментальних даних та матеріалів ретроспективного аналізу проведено згідно з методиками М.А. Плохінського [5] на ПЕОМ з використанням програмного забезпечення Місгозоft Excel.

Результати досліджень. Використання бугаїв різних ліній при розведенні чорно-рябої молочної породи сприяло формуванню стада з досить високим коефіцієнтом мінливості за молочною продуктивністю (табл. 1).

У середньому по стаду при продуктивності 3535 кг за першу і 4401 за крашу лактації він становив 19,6—20,0%. Це вказує про достатній рівень для подальшої селекційної роботи із стадом. За першою лактацією найбільш продуктивними були дочки бутая Мулата 5205 з лінії Р.Соверінга 198998 — 3800 \pm 61,6 кг, що вище від середнього у стаді на 7,5%.

Певний час у стаді використовували плідників голландських ліній, особливо А.Адема. Так за результатами наших досліджень було встановлено, що дочки бугая Доброго 1593 за першою лактацією мали молочну продуктивність 3543±179,2 кг при середній жирності молока 3,8%, тобто знаходилися на рівні середнього по стаду. Плідники інших ліній істотної відмінності щодо молочної продуктивності не мали і були на рівні середнього 3283±142,8 — 3639±113,4 кг.

За крашою лактацією найвищу пролуктивність зафіксовано у дочок плідника С.Т.Рокіта 252803-5013 кг молока жирністю 3.8%, що становить +612 кг молока та +0.03% жиру до середнього в стаді. Слід відмітити, що різниця продуктивності між найвищою і найнижчою становила 1300 кг. Таким чином, за першою лактацією найвищий тенетичний потенціал продуктивності проявили дочки плідників Мулата $5205-3800\pm61.6$; Ключа $6-3639\pm113.4\%$; Банана $3925-3579\pm181.2$ кг. За крацюю лактацією — дочки Браслета $108-5013\pm98.7$; Доброго $1593-4899\pm168.7$; Ананаса $455-4599\pm1.37.5$ кг

У сучасній практичній селекції значне місце відводиться збільшенню тривалості використання тварин. Актуальним залишається

I. Молочна продуктивність дочок плідників різних ліній

				Терша.	Перша лактація		4	ураща у	Краща лактація	
Tieis	Кличка	u	надій, кг	<u></u>	вміст жиру, %	% %	надій, кг		вміст жиру. %	8.%
			M±m	Cv	Μ±ш	ڻ	M±m	۲	Μ±m	ځ
С.Т.Рокіта 252803	Брислет 10х	76	3300±68,1 17,9	17,9	3,87±0,01	2,1	5013±98,7	17.2	3,81±0,017	1.
B.Б.Айдіала 1013415	Кумир 1535	09	3521±92,8	20,4		1,3	3.82±0.01 1,3 4437±96.5 16.8	16,8	3,78±0,01	<u>~</u>
Р.Соверінг 198998	Мулат 5205	95	3800±61.6	15,8	3,77±0,006	1.6	3800±61.6 15.8 3.77±0,006 1.6 4123±66,2 15.7 3.76±0,06	15.7	3,76±0,06	9,1
М. Чіфтейна Ключ 6	Ключ 6	36	3639±113,4 18,7	18,7	3,74±0,01	1,6	1,6 3713±113,5 18,3	18.3	3,74±0,01	1,7
95679	Банан 3925	7	3579±181,2	26,3	3.82 ± 0.01	4,1	4234±173,9 21,7	21,7	$3,77\pm0,017$	1,7
***********	Ананас 455	26	3283±142,8	22,2	3,84±0,015	2.0	4599±137,6	15,3	3,78±0,014	6,1
Середие по л	Cepeque no niruï M. Vidyretina	68	3531±83,2	22,1	3,79±0,008	2,0	$4135\pm90,0$	20,5	$3,77\pm0,007$	8,1
А. Адема	Добрий 1593	ē	3543±179,2	23.2	3.81 ± 0.036	4,4	4899±168,7	15.8	3,8+0,014	1,7
: 35(N)	Girsa 827	5	13092 [40]	20.7	3,83±6,009	1.2	4071±169,3	20.8	3,81±0,017	1.0
, or server	COURT CO. SHIP A ANDRE	7	0,410 = 2,4,5	27.7	5,x240,02	3.	4475ri34.0	20.1	3.8±0,008	1.4
Capella and chally	iady	E	1235 27.11	30.65	3,811.0,064	Ci.	44011:44,8	15.6	3,78±0,001	1,79
				1	the second and other property of the second second second		The state of the s		The statement of the same of the same of the same of	The state of the s

питання оптимального віку першого осіменіння. Аналіз наших даних (табл. 2) показує, що найбільшу тривалість життя мали нащадки Браслета 108 — 2928±56,7 дня. Дочок пього плідника вперше було осімінено у віці 528±25,4 дня. В середньому по стаду тривалість життя становила 1865±31,9 дня, вік першого плідного осіменіння — 599±8,2 дня. Варіабельність даних ознак становить відповідно 12,5—22,8 і 19,0—28,7%. На нашу думку, вік першого осіменіння зумовлений не лише генетичним фактором, але й значною мірою фактором голівлі та угримання. З табл. 2 видно, що із збільшенням віку першого осіменіння тривалість життя корів зменшується на 19,3% від середнього по стаду, у дочок плідника Мулата 5205 вік першого осіменіння — 615 днів, тривалість життя — 1506 днів.

2. Господарські якості дочок плідників різних ліній

Лінія	Кличка плідника	n	Тривалість життя, дні		Вік першого осіменіння, дні	
			M±m	Cv	M±m	Cv
С.Т.Рокіта 252803	Браслет 108	76	2928±56,7	11,5	528±25,4	28,5
В.Б.Айдіала 1013415	Кумир 1535	60	2022±62,4	18,8	616±25,6	25,3
Р.Соверінга 198998	Мулат 5205	95	1506±28,1	19,7	615±12,9	22,2
М.Чіфтейна 95679	Ключ б	36	1385±38,9	20,2	580±15,3	19,0
	Банан 3925	27	$2001\pm93,2$	22,8	$649 \pm 32,6$	24,6
	Ананас 455	26	2306±79,9	12,5	$433\pm30,4$	25,3
Середнє по лінії М.Чіфтейна		89	1673±51,9	29,1	577±15,1	24,5
А. Адема 30587	Добрий 1593	21	2455±81.9	13,8	534±54,1	28,7
	Пілот 827	24	2066±83,6	16,2	619±37,5	24,2
Середня по лінії А. Адема		45	2266±69,2	17,3	569±33.9	33,7
Середнє по сталу		365	1865±31,9	31,1	599±8.2	24.9

Висновки. 1. Найбільший вплив на господарськи корисні ознаки дочок мають бугаї, які походять з ліній С.Т.Рокіта, В.Б.Айдіала та А.Адема.

- 2. Оптимальний вік першого осіменіння, що позитивно впливає на господарські та продуктивні ознаки, -528-534 дні.
- 1. Полупан Ю.П. Селекція бутаїв за племінною (генетичною) цінністю // Проблеми розвитку тваринництва: Міжвід, темат, паук. зб. К.; Аграрна наука, 2000. Вип. 2. С. 90—92.

- 2. *Гавриленко Г. М.* Тривалість господарського використання корів української червоно-рябої молочної породи // Там само. — С. 44—46.
- 3. *Басовський М.З.*, *Рудик І.А.*, *Буркат В.П.* Вирощування, сцінка і використання плідників. К.: Урожай, 1992. 216 с.
- 4. *Петренко І.П.* До теорії консолідації порід у скотирстві // Розведення і генстика тварин. 1999. Вип. 31-32. С. 185—189.
 - 5. Плохинский Н.А. Биометрия. М.: МГУ, 1970. 368 с.

ВЛИЯНИЕ ПРОИЗВОДИТЕЛЕЙ РАЗЛИЧНЫХ ЛИНИЙ ЯЛ МОЗЯЙ-СТВЕННО ПОЛЕЗНЫЕ ПРИЗНАКИ ДОЧЕРЕЙ, В.В. Першуга

Изложены итоги оценки эффективности использования производителей различных генеалогических линий и их влияние на хозяйственно полезные признаки дочерей. Установлено, что наиболее перспективными для дильнейшей селекционной работы являются производители линий С.Т.Рокита. В.Б.Айдиала и А.Адэма. Оптимальный возраст первого осеменения лювняется 528—534 дням.

Линия, молочная продуктивность, разведение

INFLUENCE OF BREEDERS OF DIFFERENT LINES ON ECONOMICAL-USEFUL CHARACTERISTICS OF DAUGHTERS ANIMALS, V.V. Persbuta

The are given the conclusions of the estimation of the effective ness of the use of various genealogical lines breeders and their influence on economical-useful characteristics of daughters-animals. There are ascertained that the most promising for the further selective breeding researches are the breeders of the S.T. Rokita. V.B. Ideal and A. Adam. The optimum age for the first fecundation is 528–534 days.

Line, lactic productivity, breeding