КРУІІНОМАСІІТАБНАЯ СЕЛЕКЦИЯ И РАЗВЕДЕНИЕ ПО ЛИНИЯМ.

 Т.В. ПодпалаяИзложены результаты использования линейного разведения согласно принципов крупномаситабной селекции при создании жирномолочного типа украинской красной молочной породы крупного рогатого скота. Установлено положительное влияние внутрилинейного разведения на развитие хозяйственно полезных признаков у животных .

Јиния, селекция, молочное скотоводство
LARGLY SCALE SELECTION AND CULTIVATION ON LINES. T.B. Pidpala
The results of use of linear cultivation agrees of principles of largly scale selection at creation of a greasy dairy type of the Ukrainian red dairy breed of large horned cattle are stated. The positive influence inside linear cultivation on development of economic - useful attributes at an animal is established.

Line, selection, dairy cattle breeding

УДК 636.22/28. 082
І.А. РУДИК, Р.В. СТАВЕЦЬКА, В.В. СУДИКА, С.О. ТКАЧ

Білоцерківський державний аграрний університет

ДО ПРОБЛЕМИ РОЗВЕДЕННЯ ЗА ЛІНІЯМИ ПРИ ВЕЛИКОМАСШТАБНІЙ СЕЛЕКЦІЇ МОЛОЧНОЇ ХУДОБИ

Наведено результати досліджень ефективності розведення за лініями в молочному скотарстві за умов великомасштабної селекциї.

Лінія, генотип, стійкість проти захворювань, генетичний прогрес, батьки бугаїв

Ефективність великомасштабної селекції значною мірою залежить від системи розведення порід за лініями [1]. Племінна робота з лініями спрямована на поліпшення тих чи інших якостей, накопичення в сукупному генотипі лінії генів високої продуктивності. Нагромадження у тварин лінії позитивних якостей зумовлює кращий розвиток і їню стійку спадковість. Завдяки розведенню за лі-
© І.А. Рудик, Р.В. Ставецька,
Розведення і генетика тварин. 2005. Вип. 38

ніями в породі є можливість здійснювати розведення тварин без вимушених інбридингів з тенденцією поліпшення продуктивності.

Проте у розвитку теорії і практики селекції не було і немає більш складного і дискусійного питання, як розведення за лініями [2].

Особливої уваги заслуговують питання впливу родоначальника на наступні генерації нащадків при внутрішньолінійному паруванні тварин і кросах [3], необхідності систематичної ретельної оцінки генотипу тварин - продовжувачів лінії [4]. В умовах великомасштабної селекцї̈ важливим фактором є кількість ліній, які використовуються в популяціях. За даними Л.К. Ернста, Ю.Н. Григор'єва [5], багатолінійність у породі не лише ускладнює отримання необхідних плідників, але й потребує випробування великої кількості ремонтних бугаїв за якістю потомства і вкрай ускладнює інтенсивне використання кращих із нйх, лідерів серед поліпшувачів. H.Skjervold [6] зазначає, що багатолінійність - це відмова від оптимального поліпшення породи. Такої самої думки дотримуються й інші автори [7].

У зв’язку з цим є потреба у подальшому удосконаленні системи розведення порід за лініями, що і стало метою наших досліджень.

Матеріалі методика досліджень. Дослідження проведено в господарствах Київської області (2000-2001) у стадах української чорнорябої молочної породи: пллемферма СВК "Устимівський", племзавод ВАТ "Терезине"; голштинської породи - племзавод АФ "Світанок".

Моделювання на ПЕОМ альтернативних варіантів програми селекції популяцій молочної худоби Київської області виконували на основі створеної бази даних із використанням інформації про бугаїв племпідприемств.

Результати досліджень. Розведення за лініями у стадах великої рогатої худоби забезпечує різноманітність тварин за продуктивними ознаками, шо дає змогу проводити селекцію і сприяє генетичному поліпшенню популяиії (табл. 1).

Дані табл. 1 підтверджують вплив лінійної належності на їхню молочну продуктивність. Так у всіх досліджуваних господарствах установлено вірогідну різницю ($\mathrm{P}>0,95$) за основною селекційною ознакою - надоєм молока у корів, шо належать до різних ліній. До того ж корови окремих ліній проявляють свою генетичну перевагу у різних стадах. Наприклад, корови, що належагь до лінії Ельбруса 897, мають найвищий рівень молочної продуктивності у стадах СВК "Устимівський" і ВАТ "Терезине".

Корови різних ліній мають істотні відмінності за типом будови

1. Молочна продуктивність корів окремих ліній за 305 днів периої лактації

Лінії	n	Надій, кт		Вміст жиру, \%		Молочний жир, KI	
		$\mathrm{X} \pm \mathrm{m}$	Cv	$\mathrm{X} \pm \mathrm{m}$	Cv	$\mathrm{X} \pm \mathrm{m}$	Cv
СВК "Устимівський"							
Ельоруса 897	296	3411 ± 34.5	17,4	$3,50 \pm 0,012$	3,6	$119,2 \pm 1,25$	17,5
$\begin{aligned} & \text { С. Т. Рокета } \\ & 252803 \end{aligned}$	268	3279 $\pm 48,2$	23,5	$3,47 \pm 0,010$	4,7	$113,8 \pm 1,67$	23,7
ВAT "Терезине"							
Судлина 1698624	313	$4933 \pm 50,4$	17.9	$3,72 \pm 0,015$	4,1	183,4さ1,86	18,6
Монтфік Чіфгейна 95679	239	5104 $\pm 55,4$	16,6	3,74 $\pm 0,013$	4,7	191,5 $\pm 2,18$	17.5
Ельбруса 897	99	$5294 \pm 84,9$	16,0	$3,74 \pm 0,019$	4,6	$198,3 \pm 3,43$	17,2
АФ "Світанок"							
$\begin{aligned} & \text { Старбака } \\ & 352790.79 \end{aligned}$	126	$6219 \pm 86,3$	15,6	3,54 $\pm 0,043$	11,4	220,0 $\pm 3,73$	19,0
Чіфа 1427381.62	101	$6336 \pm 88,7$	14.1	$3,53 \pm 0,043$	10.7	$223,2 \pm 3,64$	16,4
Елевейина 1491007.65	76	$6366 \pm 128,7$	17,6	$3,44 \pm 0,045$	10,0	219,1 $\pm 5,18$	20,4

тіла, технологічними ознаками (формою і розвитком вим'я, швидкістю молоковіддачі) та стійкістю проти захворювань. На сучасному етапі розвитку молочного скотарства особливу увагу селекціонерів привертає проблема стійкості тварин проти таких захворювань, як лейкоз, туберкульоз та мастит, що наносять господарствам відчутних економічних збитків.

У зв'язку з цим ми проаналізували відмінності між коровами окремих ліній за частотою захворюваності на мастит (табл. 2). Порівняльна оцінка ліній за стійкістю проти маститу показує, що у кожному стаді вирізняються краші лінії за стійкістю корів проти маститу. До таких належать лініі: Чіфа, Метта, Суддина, Белла. Лінія Чіфа проявляє найкращі результати за пісю ознакою у двох стадах.

Отже, результати досліджень показують, шо вірогідна оцінка продовжувачів ліній та спрямований добір за основними селекційними ознаками кожної лінії сприяють поступальному розвиткові породи в цілому. Водночас однією з головних проблем розвитку молочного скотарства нашої країни є низькі темпи генетичного поліпиення популяцій. Так, якцо у країнах із розвиненим молочним скотарством величина щорічного генетичного прогресу становить
2. Частота захворюваності на мастит корів окремих ліній

Лінії	n	Хворих корів	
		n	\%
СВК "Устимівський"			
В.Б. Айдіала 1013415	107	69	64,5
М. Чіфтейна 95679	31	13	42,0
С.T. Pokera 252803	28	22	78,6
Старбака 352790.29	27	8	29,6
Чіфа 1427381.62	16	3	18,8
ВAT "Терезине"			
Суддина 1698624	126	25	19,8
М. Чіфтсйна 95679	73	21	28,8
Айвенго 1189870	19	4	21.1
Метта 1392858	14	1	7,1
АФ "Світанок"			
Елевейшна 1491007.65	152	32	21,0
Старбака 352790.29	139	32	23,0
Чіфа 1427381.62	117	18	15,4
Валіаита 1650414.73	87	21	24,1
Белла 1667366.74	46	9	19,6

85 кг молока [7], то у популяції чорно-рябої худоби Київської області він - 16,5 кг, а червоно-рябої худоби - 10,4 кг молока [8].

Дослідження показали, шо основними причинами низьких темпів генетичного поліпшення популяції є низька інтенсивність добору продовжувачів ліній, надмірна кількість ліній та втрата вплииву родоначальників ліній на віддалені покоління. Приміром, у популяції чорно-рябої худоби Киӥвської області чисельністю 85846 корів у 2000 р. використовувалась сперма 120 плідників, шо належать до 20 ліній. Від кожного батька отримано в середньому лише 1,8 сина, тому частота генів високоцінних бугаїв, так званих лідерів породи, є надзвичайно низькою.

У США і в Канаді, наприклад, від кожного лідера голштинської породи отримують і використовують сотні і тисячі синів, що дало змогу за 20 років підвищити продуктивність породи на 3000 кг молока.

3
метою прискорення темпів генетичного поліпшення поріл молочної худоби сслекпй̆ним центрам необхілно систематизувати розведення за лініями. Моделювання на ПЕОМ альтсрнативних варіантів програми селекпї показало, шо зменшення кількості ліній завдяки підвишенню жорсткості добору батьків бугаїв приводить до зростання величини генетичного прогресу за надоєм (табл. 3).

3. Впиив кількості ліній і батьків бугаїв на величину генетичного прогресу за надоем у попуаяції чорно-рябої худоби

Кількість		Племінна цінність за надоем, кг	Генетичний прогрес	
ліній	батъків бугаїв, гол.		$\Delta \mathrm{G}, \mathrm{Kr}$	$\Delta \mathrm{G}, \%$
20 (факт.)	68	+379	16.5	0,61
По одному бугаю з лінї				
20	20	+787	46.7	1.72
15	15	+918	50,6	1,86
10	10	+1191	55.4	2,03
5	5	$+1683$	64,2	2,36
По два буааї з лініі				
15	30	$+736$	47,6	1,75
10	20	943	51,3	1,89
5	10	1338	58,4	2,15

За результатами фактичної селекції в популяції чорно-рябої худоби Київської області при розведенні 20 ліній та використанні 68 батьків бугаїв величина генетичного прогресу за налоем становить 16,5 кг молока. Якно з кожної лінії відбирати в групу батьків бугаїв по одному кращому бугаю (20 гол.), то їхня племінна шінність становитиме 787 кг, но на 408 кг молока більше, ніж при фактичній системі селекції батьків бугаїв, а генетичний прогрес за надоєм 46,7 кт молока на корову в рік. Із зменшенням діній від 20 до 5 племінна цінність відібраних батьків бугаїв становитиме 1683 кт, а генетичний прогрес - 64,2 кт молока.

За необхідності розгалуження ліній можна відбирати з кожної лінії но 2 пыіцники в групу батьків, що забезпечить гснстичний прогрес за надоєм на рівні $58,4 \mathrm{kr}$ молока на корову в рік.

Оинією з проблемних сторін розведення за лініями є втрата впливу родоначальника на наступні покоління. Відомо, но в кожному

наступному поколінні вплив родоначальника зменнується вдвічі: в першому поколінні частка гснотипу родоначальника становить 50%, у другому - 25% і т.д. Аналіз генсалогічної структури українських чорно-рябої та червоно-рябої молочних порід ноказус, но лінія М. Чіфтейна 95679 складається з 8 поколінь, Р. Соверінга 198998 та В.Б. Айдіала1013415 - із 7 поколінь і т.д., а це означас, шо частка генотипу родоначальників у $7-8$-му поколінні становить 0,39 $0,78 \%$. Тому дяя підвищення ефективності селекції молочної худоби необхідно перейти до розведення коротких ліній: родоначаль-ник-сини-внуки. Серед правнуків необхідно виділити лідерів породи, які стануть родоначальниками наступних коротких ліній. Ця система може бути ефективною за умови високовірогідної оцінки бугаїв.

Висновки. Існуюча система розведення за лініями в молочному скотарстві забсзпсчує невисокі темпи генетичного прогресу за селекційними ознаками. Причинами є: низька інтенсивність добору батьків бугаїв, надмірна кількість ліній у популяціях, втрата впллиу родоначальників ліній на віддалені покоління. 3 метою підвищення ефективності розведення за лініями селекційним центрам необхідно організувати і координувати розведення коротких ліній.

1. Басовський М. З., Рудик I.A., Буркат В.II. Вирощування, оцінка і використання плідників. - К.: Урожай, 1992. - 216 с.
2. Оценка быков и управление генеалогией породы / М.В. Зубец, В.И. Власов, В.П. Буркат и др. // Каталог быков-производителей молочных пород, оцененных по качеству потомства за 1986 год. - К.: Урожай, 1988.-163 c.
3. Шакиров Ф.Б. К дискуссии о разведении по линиям // Животноводство. - 1984. - № 4. - С. 37-39.
4. Кольtикина Н.С., Бибикова Э.И., Боев М.М. Заводская работа в молочном стаде // Там само. - № 10.- С. 36-38.
5. Эрнст Л.К., Грисорьев Ю.Н. Повышать эффективность селекции в молочном скотоводстве // Зоотехния. - 1988. - № 4. - С. 19-24.
6. Skjervold H. Den optimala utformingen av seminaven // Holista. - 1965. P. 76 .
7. Системы селекции молочного скота в России / И.М. Дунин, С.Н. Харитонов, А Т. Сперанский и др. // Зоотехния. - 1997. - № 1. - С. 2-7.
8. Рудик I.A., Судика B.B. Оптимізаиія селекиійного пронесу в популяціях молочної худоби Київської області // Наук. вісн. Львів. ДАВМ ім. С.3. Гжицького. - Львів, 2003. - Т. 5 (№2). - Ч. 4. - С. 107-110.
'K ПРОБЛЕМЕ РАЗВЕДЕНИЯ ПО ЛИНИЯМ ПРИ КРУПНОМАСШТАБНОЙСЕЛІКЦЦИ МОЛОЧНОГО СКОТА. И.А. Рудик, Р.В. Ставецкая, В.В. Судика, С.О. Ткач

Изложены результаты исследований эффективности разведения по линиям в молочном скотоводстве при крупномасштабной селекции.

Линия, генотип, устойчивость к заболеваниям, генетический прогресс, отды быков
to a problem of lines breeding of dairy cattle at largeSCALE SELECTION. I. Rudyk, R. Stavetska, V. Sudyka, S. Tkach

The results of researches the efficiency lines breeding in dairy cattle at large-scale selection are given in the article.

Line, genotype, stability to diseases, genetic progress, fathers of the bulls

УДК 636.2.082.251

М.Й. ЧЕХІВСЬКИЙ

Iнститут розведення і генетики тварин УААН

ПРО НЕПРИЙНЯТНІСТЬ ЛІНІЙНОГО РОЗВЕДЕННЯ ВЕЛИКОЇ РОГАТОЇ ХУДОБИ

Добре відомо, що акт поліпшення порід великої рогатої худоби можна розглядати як процес зміни частоти алелів у популяціях тварин, а відношення, які при цьому виникають, виступають як прояв адитивних (комулятивних) і нелінійних ефектів дії генів, які за свосю суттю мисляться як відхилення від менделівських формул розщеплення і в загальному являють полімерний тип взаємодії.

Від способу організації генетичних ефектів у селекційній роботі залежить вибір стратегії розведення. Якщо зміна частот алелів відбувається шляхом формування лінійного ряду предків, починаючи від засновника лінії, ми говоримо про стратегію лінійного розведення.

Можна привести безліч визначень поняття розведення за лініями, але всі вони виділяють такі істотні ознаки (критерії лінійного розведення): це повинна бути численна група нашадків видатного родоначальника і друга особливість - збереження подібності тварин різних поколінь з родоначальником за типом і рівнем продук-
© М. Й. Чехівський, 2005
Розведення і генегика тварин. 2005. Вип. 38

