ГЕНЕТИЧНА ПОДІБНІСТЬ ТА ПРОДУКТИВНІСТЬ
 ІНБРЕДНИХ І АУТБРЕДНИХ КОРІВ ГОЛЛАНДСьКОІ ПОРОДИ ${ }^{1}$

I. Т. ХАРЧУК, кандидат сільськогосподарських наук

Центральна дослідна станція по штучному осіменінню сільськогосподарських тварин

Інбридинг веде до «насичення потомків кров’ю преддка». Іншими словами, веде до того, що потомок стає більш схожим за своїм генотипом на свого предка. Для вимірювання тісноти інбридингу С. Райтом було запропоновано коефіцієнт генетичної подібності.
Д. А. Кисловський (1965) відмічав, що процес інбридування різноманітний за своїми наслідками, до того ж вони значною мірою протилежні за' своїми тенденціями. Чим пізніший перехід до помірних та віддалених ступенів спорідненого спарювання, тим відносно все більшого значення набуває зростання генетичної подібності з родоначальником, а значення розчленування його генотипу (зростання гомозиготності) падає. Помірні інбридинги сприяють повторенню генотипу родоначальника.

Методика досліджень. У роботі були використані матеріали племінного зоотехнічного обліку восьми племінних господарств Української РСР, які розводять велику рогату худобу чорно-рябої породи: племзаводу «Кожанський», радгоспу «Білоцерківський», підсобного господарства «Чайка» Київської області, племзаводу «Оброшино» Львівської області, племрадгоспів «Кутузівка» Харківської і «Комінтерн» Хмельницької областей, господарств Ровенської та Сарненської сільськогосподарських дослідних станцій Ровенської області.

Для кожної з інбредних тварин визначали коефіцієнт зростання гомозиготності (F) в процентах за формулою С. Райта, видозміненою Д. А. Кисловським. Для інбредних і аутбредних тварин визначали коефіцієнти генетичної подібності (R) з родоначальником лінії також за формулөю С. Райта з використанням запропонованих M. A. Кравченком і М. М. Майбородою (1968) допоміжної таблиці та техніки розрахунків.

Для розрахунків генетичної подібності при інбридингу попередньо визначали питому вагу (ПВ) загальних предків у родоводах тварин з врахуванням коефіцієнтів зростання гомозиготності. Генетична подібність враховувалась починаючи з $6,25 \%$, тобто в інбредних тварин при спорідненому спарюванні типу V-V, а в аутбредних при перебуванні родоначальника в четвертому ряді родоводу чи в більш віддалених рядах при однобічному інбридингу.

Величини коефіцієнтів генетичної подібності коливались в межах від 6,25 до 50%.

Результати досліджень. Основне завдання цього повідомлення полягає у висвітленні матеріалів про вплив інбридингу та рівня генетичної

[^0]1. Показники продуктивності інбредних (чисельник) та аутбредних (знаменник)

подібності з родоначальником лінії на господарсько-корисні ознаки корів голландської породи. Для дослідження підібрали тварин, які належали до найкількіснішої серед голландської худоби лінії Аннас Адеми 30587.

Дані середніх показників продуктивності інбредних та аутбредних корів наведені у таблиці 1 , а різниця в цих показниках та їі вірогідність між групами окремс в кожному з господарств - у таблиці 2.

Дані абсолютних показників свідчать про те, що найвищі надої у межах трьох лактацій одержали в стадах племрадгоспу «Кутузівка», підсобного господарства «Чайка» та племзаводу «Кожанський». У цих господарствах на одну фуражну корову було витрачено відповідно 6364, 42-55 та 44-48 ц кормових одиниць, що більше, ніж в інших господарствах. У стадах цих господарств спостерігали найвищий вміст жиру в молоці, крім племзаводу «Кожанський», де застосовується жомова годівля і раціони не збалансовані за перетравним протеїном. Так, наприклад, витрати протеїну на одну корову у племрадгоспі «Кутузівка» становили $6,3-6,5 \mu$, у підсобному господарстві «Чайка»-6,2-7,4, племзаводі «Кожанський» - $3,6-5,1$ ц.

За абсолютними показниками надоїв та вмісту жиру в молоці інбредні та аутбредні групи корів за перші три лактації в більшості господарств не різнилися між собою. Тільки в стаді племзаводу «Кожанський» за першу та другу лактації спостерігали вірогідне зниження вмісту жиру в молоці на $0,10 \pm 0,04$ і $0,12 \pm 0,06 \%$ відповідно, а також збільшення надоїв за третю лактацію на 479 ± 226 кг у групі інбредних тварин. У господарстві Сарненської дослідної станції спостерігали ві-

голландськнх корів 3 лінії Аннас Адеми 30587

II лактація				III лактація		
, \% жиру		надıй, кг	\% жиру		надій, κ z	\% жиру
3,63 $\pm 0,02$ -	29	3836 ± 164	$3,73 \pm 0,03$	19	4502 ± 162	$3,73 \pm 0,03$
$3,73 \pm 0,03$	13	3704 ± 179	$3,85 \pm 0,05$	10	4023 ± 158	$3,78 \pm 0,05$
3,86 $\pm 0,03$	37	3182 ± 101	$3,98 \pm 0,03$	30	3695 ± 142	$3,89 \pm 0,04$
$3,89 \pm 0,03$	33	3180 ± 125	$3,99 \pm 0,03$	28	3595 ± 127	$3,93 \pm 0,03$
$3,76 \pm 0,11$	16	3130 ± 103	$3,82 \pm 0,06$	10	3365 ± 133	$3,87 \pm 0,10$
$3,74 \pm 0,05$	9	3341 ± 155	$3,81 \pm 0,07$	5	3276 ± 280	$3,90 \pm 0,14$
$3,98 \pm 0,05$	7	3052 ± 285	$4,20 \pm 0,08$	6	3893 ± 178	$4,05 \pm 0,06$
$3,96 \pm 0,04$	8	3481 ± 207	$3,99 \pm 0,05$	6	3767 ± 336	$4,01 \pm 0,04$
$3,74 \pm 0,02$	21	3622 ± 176	$3,86 \pm 0,03$	16.	3801 ± 148	$3,80 \pm 0,02$
$3,78 \pm 0,02$	30	3558 ± 127	$3,90 \pm 0,03$	28	3648 ± 98	$3,85 \pm 0,03$
$3,84 \pm 0,03$	34	3324 ± 152	$3,95 \pm 0,04$	27	3932 ± 131	$3,85 \pm 0,03$
$3,87 \pm 0,04$	26	3030 ± 99	$4,03 \pm 0,06$	23	3720 ± 164	$3,91 \pm 0,03$
$3,87 \pm 0,03$	20	4374 ± 184	$4,02 \pm 0,03$	15	5107 ± 223	$3,99 \pm 0,03$
$3,96 \pm 0,04$	14	4416 ± 246	$4,17 \pm 0,07$	10	4941 ± 226	$4,16 \pm 0,05$
$3,84 \pm 0,02$	35	3900 ± 158	$4,06 \pm 0,03$	27	4840 ± 176	$4,07 \pm 0,04$
3,82 $\pm 0,02$	37	3909 ± 134	$4,05 \pm 0,03$	31	4749 ± 136	$4,08 \pm 0,03$

рогідне підвищення вмісту жиру за другу лактацію, а в підсобному господарстві «Чайка» зниження його за третю лактацію в групі корів від спорідненого спарювання.

Для аналізу впливу рівня генетичної подібності голландських корів згаданих раніше господарств з родоначальником лініі Аннас Адемою 30587 за показниками надоїв, вмістом жиру в молоці за першу лактацію проведено розрахунки кореляційних зв'язків (табл. 3).

Коефіцієнти кореляції між зв'язаними величинами мають різні залежно від стада та враховуваного показника як позитивні, так і негативні значення. У більшості випадків позитивні та негативні зв'язки виявилися невірогідними, тому за цими показниками можна судити лише про тенденцію в зміні окремих з них.

Всі ці зв'язки настільки незначні, крім відмічених у таблиці 3 , що віддати належне позитивній чи негативній зміні ознак, впливу рівня генетичної подібності корів з родоначальником лінії Аннас Адемою 30587 було б невірним.

I дійсно, чому від одного і того ж рівня генетичної подібності з певним родначальником одержують тварин з різними результатами? Пояснити можна тільки відносністю коефіцієнта генетичної подібності, яка зумовлена імовірносним характером спадкової передачі ідентичних генів у ряді поколінь від загального предка до пробанда, а звідси і нерівноцінністю однакових за родоводом тварин.

Наприклад, спорідненість між півсибсами в середньому становить 25%, але це не означає, що між всіма особинами з такої групи фактична спорідненість буде рівною 25%. Навпаки, теоре-
N. 2. Різниця в показниках продуктивності інбредних та аутбредних корів по господарствах (Мd аутбредні - інбредні)

	1 лактація			II лактаиія		III лактація	
		надій, кz	\% жиру	надій, кz	\% жиру	надІй, кz	\% жиру
	$\underset{\substack{M d(a-l) \\+m d}}{ }$	$M d(a-i)+m d$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$	$M d(a-i)+m d$	$M d(a-i)+m d$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$
Племзавод «Кожанський»	$+2,0 \pm 1,36$	$+42 \pm 205$	$-0,1 \pm 0,04$	$+132 \pm 243$	$-0,12 \pm 0,06 *$	$+479 \pm 226$	$-0,05 \pm 0,06$
Племзавод «Оброшино»	+0,2 $\pm 0,80$	$+32 \pm 112$	$-0,03 \pm 0,04$	$+2 \pm 161$	$-0,01 \pm 0,04$	$+100 \pm 190$	$-0,04 \pm 0,05$
Господарство Ровенської дослідної станції	$-2,0 \pm 0,83^{*}$	-340 ± 208	$+0,02 \pm 0,11$	-211 ± 186	$+0,01 \pm 0,08$	$+89 \pm 309$	$-0,03 \pm 0,17$
Господарство Сарненської дослідної станції	$-0,6 \pm 1,30$	$+161 \pm 303$	$+0,02 \pm 0,05$	-429 ± 352	$+0,21 \pm 0,10^{*}$	$+126 \pm 379$	$+0,04 \pm 0,07$
Радгосп «Вілоцерківський»	$+0,6 \pm 0,45$	-192 ± 104	$-0,04 \pm 0,03$	$+64 \pm 217$	$-0,04 \pm 0,04$	$+154 \pm 177$	$-0,05 \pm 0,04$
Радгосп «Комінтерн»	$-1,0 \pm 0,50^{*}$	$+113 \pm 113$	$-0,03 \pm 0,05$	$+294 \pm 181$	$-0,08 \pm 0,07$	$+212 \pm 210$	$-0,06 \pm 0,04$.
Радгосп «Кутузівка»	$+0,7 \pm 1,00$	$+23 \pm 234$	$-0,09 \pm 0,05$	-42土307	$-0,15 \pm 0,08$	$+166 \pm 317$	$\begin{aligned} & -0,17 \pm \\ & \pm 0,05^{* *} \end{aligned}$
Підсобне господарство «Чайка»	$-0,1 \pm 0,76$	$+130 \pm 107$	$+0,02 \pm 0,03$	-9 ± 207	$+0,01 \pm 0,04$	$+91 \pm 222$	$-0,01 \pm 0,05$

Примітка. Різниця невірогідна, крім * $P>0,95$ i $^{* *} P>0,99$.
вищення їі жирномолоч-
ності.

 лочністю, що пов'язано 3 худоби) та іх жирномона серед голландської
 тварин ${ }^{3}$ родоначальни-
ком лініі Аннас Адемою ня генетичної подібності тивний взаємозв'язок рівджень вказують на позиновищі результати дослі-
Але і при такому стажди будуть відображати -яеє ән ! ! Јоно! пои Іонииц -әнәл я!чнэ!п!фәоя инй лінь, розрахункові велиучасть як проміжні ланки
в загальній зміні поко-
 хування якості і споріднезультати. Отже, без вратворюють одержані ре-
 дібності ми не позбавлені фіцієнтів генетичної поми). зв ззку з цим при ковими задатками (генаміж особинами за іх спадне означає тотожності g!

 'еутәdu of иพенал вє иш -ино!пои тqг! 9 ицК9 шен -иооэо шиявәт Клошє эет ӘП я!нәл хинницнәџ! \%0G
 тично можливо, що ці пів-

 можливість судити не тільки про генотип тварини, але й про структуру

 я. А. ГОЛОТА, кандидат біологічних наук

ИGOU'KX IOLVJOd IOMИIrヨa IgOdM ИНIVGOdИD ГЕНЕТИЧНИЙ ПОЛІМОРФІЗМ АМІЛАЗИ

Примітка. Кореляції невірогідні, крім * $P>0,95$ i $^{* *} P>0,999$.

[^1]
[^0]: ${ }^{1}$ Роботу виконано під керівництвом кандидата сільськогосподарських наук O. I. Смирнова.

[^1]:

