N. 2. Різниця в показниках продуктивності інбредних та аутбредних корів по господарствах (Мd аутбредні - інбредні)

	1 лактація			II лактаиія		III лактація	
		надій, кz	\% жиру	надій, кz	\% жиру	надІй, кz	\% жиру
	$\underset{\substack{M d(a-l) \\+m d}}{ }$	$M d(a-i)+m d$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$	$M d(a-i)+m d$	$M d(a-i)+m d$	$\begin{gathered} M d(a-i)+ \\ +m d \end{gathered}$
Племзавод «Кожанський»	$+2,0 \pm 1,36$	$+42 \pm 205$	$-0,1 \pm 0,04$	$+132 \pm 243$	$-0,12 \pm 0,06 *$	$+479 \pm 226$	$-0,05 \pm 0,06$
Племзавод «Оброшино»	+0,2 $\pm 0,80$	$+32 \pm 112$	$-0,03 \pm 0,04$	$+2 \pm 161$	$-0,01 \pm 0,04$	$+100 \pm 190$	$-0,04 \pm 0,05$
Господарство Ровенської дослідної станції	$-2,0 \pm 0,83^{*}$	-340 ± 208	$+0,02 \pm 0,11$	-211 ± 186	$+0,01 \pm 0,08$	$+89 \pm 309$	$-0,03 \pm 0,17$
Господарство Сарненської дослідної станції	$-0,6 \pm 1,30$	$+161 \pm 303$	$+0,02 \pm 0,05$	-429 ± 352	$+0,21 \pm 0,10^{*}$	$+126 \pm 379$	$+0,04 \pm 0,07$
Радгосп «Вілоцерківський»	$+0,6 \pm 0,45$	-192 ± 104	$-0,04 \pm 0,03$	$+64 \pm 217$	$-0,04 \pm 0,04$	$+154 \pm 177$	$-0,05 \pm 0,04$
Радгосп «Комінтерн»	$-1,0 \pm 0,50^{*}$	$+113 \pm 113$	$-0,03 \pm 0,05$	$+294 \pm 181$	$-0,08 \pm 0,07$	$+212 \pm 210$	$-0,06 \pm 0,04$.
Радгосп «Кутузівка»	$+0,7 \pm 1,00$	$+23 \pm 234$	$-0,09 \pm 0,05$	-42土307	$-0,15 \pm 0,08$	$+166 \pm 317$	$\begin{aligned} & -0,17 \pm \\ & \pm 0,05^{* *} \end{aligned}$
Підсобне господарство «Чайка»	$-0,1 \pm 0,76$	$+130 \pm 107$	$+0,02 \pm 0,03$	-9 ± 207	$+0,01 \pm 0,04$	$+91 \pm 222$	$-0,01 \pm 0,05$

Примітка. Різниця невірогідна, крім * $P>0,95$ i $^{* *} P>0,99$.
вищення їі жирномолоч-
ності.

 лочністю, що пов'язано 3 худоби) та іх жирномона серед голландської
 тварин ${ }^{3}$ родоначальни-
ком лініі Аннас Адемою ня генетичної подібності тивний взаємозв'язок рівджень вказують на позиновищі результати дослі-
Але і при такому стажди будуть відображати -яеє ән ! ! Јоно! пои Іонииц -әнәл я!чнэ!п!фәоя инй лінь, розрахункові велиучасть як проміжні ланки
в загальній зміні поко-
 хування якості і споріднезультати. Отже, без вратворюють одержані ре-
 дібності ми не позбавлені фіцієнтів генетичної поми). зв ззку з цим при ковими задатками (генаміж особинами за іх спадне означає тотожності g!

 'еутәdu of иพенал вє иш -ино!пои тqг! 9 ицК9 шен -иооэо шиявәт Клошє эет ӘП я!нәл хинницнәџ! \%0G
 тично можливо, що ці пів-

 можливість судити не тільки про генотип тварини, але й про структуру

 я. А. ГОЛОТА, кандидат біологічних наук

ИGOU'KX IOLVJOd IOMИIrヨa IgOdM ИНIVGOdИD ГЕНЕТИЧНИЙ ПОЛІМОРФІЗМ АМІЛАЗИ

Примітка. Кореляції невірогідні, крім * $P>0,95$ i $^{* *} P>0,999$.

[^0]ного виду, але́ різняться за деякими фізико-хімічними властивостями (Уілкінсон, 1968).

Розвиток порівняльної біохімії ензимів. є одним з відносно нових наукових напрямків. Вона вивчає різноманітність молекулярних форм ензимів в одній і тій же тканині або рідині тіла.

Опубліковано декілька робіт, в яких показана електрофоретична поведінка і поліморфізм амілази у сироватці крові великої рогатої худоби - AmAA, AmBB, AmCC, AmAB, AmAC i AmBC. Кожний тип амілази характеризується специфічною електрофоретичною рухливістю, спадкується кодомінантно і контролюється генетично трьома алелями $\mathrm{Am}^{\mathrm{A}}, \mathrm{Bm}^{\mathrm{B}}$ i Am^{C}.

Подібні дослідження поліморфізму амілази у великої рогатої xyдоби провели М. Хессельхольт, Б. Ларсен і П. Б. Нільсен (1966) Дж. Гаспарський і Р. В. Стевенсон (1968), В. І. Сокол і Л. М. Романов (1969), I. К. Прозора (1970), О. І. Олійник, С. І. Шадманов, В. О. Корішков (1970), Л. А. Зубарєва, О. Н. Соломонова, Н. У. Кузнецов (1970), Ц. Макавєєв (1970), Н. Н. Букатуру і Л. О. Зубарєва (1972). Проте ці дослідження охоплюють незначну частину поголів'я окремих порід і груп. Метою нашого дослідження було вивчити поліморфізм амілази сироватки крові великої рогатої худоби симентальської, чорно-рябої і червоної степової порід, які розводяться на Україні.

Методика досліджень. Дослідження проводили на 2221 тварині в семи племінних заводах і племінних радгоспах Укрголовцукру Міністерства харчової промисловості УРСР (в п'ятьох племзаводах і племрадгоспах розводять симентальську худобу, в одному чорно-рябу і одному червону степову) і на Центральній дослідній станції штучного осіменіння сільськогосподарських тварин. Сироватку крові відокремлювали від згустків крові, центрифугували 10 хвилин при 4000 об/хв і зберігали в холодильнику.

Для виготовлення геля брали 15% частково гідролізованого крохмалю, 1,74 гтрисбуфера 10,92 г лимонної кислоти на 1Ω дистильованої води ($\mathrm{pH} 7,6$). Для виготовлення електроліту брали 0,74 г гідрату окису літію 11,780 г борної кислоти на 1Ω води ($\mathrm{pH} 8,6$). Електрофорез проводилли до того часу, поки лінія «Брауна» не дійде на 4-5 см від «старту» до аноду. Після закінчення електрофорезу крохмальну пластинку розрізали на дві половинки і витримували в термостаті при температурі 37° в розчині ацетатного буфера $\mathrm{pH} 5,7$ (102 г оцтовокислого натрію, 6 г льодяної оцтової кислоти і 1 г парафенілендіаміну солянокислого або сірчанокислого на 1Ω дистильованої води). Розчин зливали, пластинки промивали водою і читали реакцію. Виявлення амілазних фракцій базується на гідролізуючій властивості амілази сироватки крові ферментувати крохмаль. Внаслідок цьото з'являються світлі прозорі смуги, які забарвлюються в фіолетовий колір. Частоту алелів, які контролюють типи амілази сироватки крові у великої рогатої худоби, вираховували за формулою:

$$
g^{\mathrm{c}}=\frac{2 \mathrm{AmBB}+\mathrm{AmBC}}{2}
$$

$$
g^{c}=\frac{2 \mathrm{AmCC}+\mathrm{AmBC}}{2}
$$

стандартне відхилення визначали за формулою

Результати досліджень. Результати наших досліджень показують, що у великої рогатої худоби симентальської, чорно-рябої і червоної степової порід, які розводяться на Україні, спостерігається три із шести фенотипів амілази: $\mathrm{AmBB}, \mathrm{AmCC}, \mathrm{AmBC}$ (табл. 1). Тип AmBB є гомозиготним і характеризується однією фракцією з найбільшою електрофоретичною рухливістю, тип АmCC також гомозиготний з меншою електрофоретичною рухливістю і тип AmBC гетерозиготний з двома фракціями.

1. Розпяділ фенотипів амілази сироватки крові

Породи		AmBB		AmCC		AmBC	
		кІлькість тварин	\%	кількість тварин	\%		\%
ССиментальська	1200	828	69,1	205	17,0	167	13,9
\bigcirc Чорно-ряба	475	184	33,7	195	41,1	96	20,2
Ч Червона степова	546	421	77,1	34	6,2	91	16,7

Результати досліджень показують, що найвищий процент тварин з типом амілази ВВ спостерігається серед тварин червоної степової породи і найнижчий серед тварин чорно-рябої породи. Серед тварин чорнорябої, породи порівняно з тваринами червоної степової і симентальської яорід спостерігали найбільший процент тварин з типами амілази СС BC.

За частотою генів локусу амілази виявили значну різницю між породаини, а також між окремими стадами і групіами тварин великої рогатоІ худоби (табл. 2).

Для симентальської і червоної степової порід характерна більш висока уастота гена Am^{B}. У чорно-рябої породи частота генів Am^{B} i Am^{C} ма́н̆же однакова. Серед симентальської породи також встановили деяку різницю за частотою локусу генів амілази між окремими стадами. Так, жкмо в середньому в п'яти господарствах симентальської худоби конеентрація гена Am^{B} становила $0,760 \pm 0,0088$, то в стаді племзаводів山Аамраївський» - $0,808 \pm 0,0272$, «Матусово» $-0,673 \pm 0,0243$, «ВеселоПодолянський» $-0,798 \pm 0,0144$, в стадах племрадгоспів «Драбів<ький» - $0,795 \pm 0,0295 \mathrm{i}$ «Юзефо-Миколаївський» $-0,725 \pm 0,0180$.

У корів симентальської, червоної степової і чорно-рябої порід концентрація гена Am^{B} була вищою, ніж концентрація гена Am^{C}. Таку закономірність спостерігали дослідники інших порід (К. И. Прозора, 1970; Х. Майєр, 1967; Ц. Макавєєв, 1970; В. І. Сокол, ЛІ. М. Романов, 1970;
2. Типи і частота ге用в амілази сироватки крові у досліджених тварин

Господарства	Стать тварин		Типи амІлази			Частота генів	
			BB	CC	BC	$A T^{B}$	$\mathrm{Ar}^{\text {C }}$

Симентальська порода

Веселоподолянський	Корови	435	309	50	76	0,798 $\pm 0,0144$	0,202 $\pm 0,0$
	Бугаї	26	20	5	3	0,827 $\pm 0,0520$	0,173 $\pm 0,0520$
Шамраївський плем-	Корови	107	82	16	9	$0,808 \pm 0,0272$	$0,192 \pm 0,0272$
завод Матусівський плем-	Корови	149	90	37	22	$0,673 \pm 0,0248$	0,327 $\pm 0,0248$
завод	Бугаї	12	6	6	-	0,500 $\pm 0,1020$	0,500 $\pm 0,1020$
Драбівський плем-	Корови	88	63	11	14	0,795 $\pm 0,0295$	$0,205 \pm 0,0295$
	Бугаї	7	7	-	-	$1,00 \pm 0,00$	
Юзефо-Миколаївський племрадгосп	Корови	322	217	72	33	0,725 $\pm 0,0180$	0,275 $\pm 0,01$
	Буraï	16	11	5	-	$0,688 \pm 0,0819$	$0,312 \pm 0,0819$
Центральна дослідна станція	Бyraï	38	23	5	10	$0,738 \pm 0,0504$	$0,262 \pm 0,0504$
В середньому	Корови	1101	761	186	154	0,761 $\pm 0,0091$	$0,239 \pm 0,0091$
	Бугаї	99	67	19	13	$0,742 \pm 0,0311$	0,258 $\pm 0,0311$
Разом		1200	828	205	167	$0,760 \pm 0,0088$	$0,240 \pm 0,0088$

Племзавод Кож	Корови	421	171	166	84	$0,506 \pm 0,0173$	0,494 $\pm 0,0173$
цукрокомбінату	Бугаї	14	5	6	3	0,464 $\pm 0,0942$	0,536 $\pm 0,0942$
Центральна дослідна станція	Буга	40	8	23	9	$0,312 \pm 0,0518$	$0,688 \pm 0,0518$
Разом		475	184	195	96	$0,489 \pm 0,0162$	$0,511 \pm 0,016$

Червона степова порода

Племзавод ім. Комін-	Корови	534	411	34	89	$0,853 \pm 0,0108$	$0,177 \pm 0,0108$
терна	Бугаї	12	10	-	2	$0,917 \pm 0,0563$	$0,083 \pm 0,0563$
Разом		546	421	34	91	$0,855 \pm 0,0107$	$0,145 \pm 0,0107$

Г. К. Ештон, 1965, Дж. Гаспарський та інші, 1968; М. Хессельхольт і Дж. Моустгаард, 1965).

Порівняння визначених нами частот алелів у локусі амілази з літературними даними (табл. 3) показує, що симентальська порода за частотою генів наближається до симентальської худоби Молдавської РСР і Болгарії та швіцької породи; червона степова порода - до червоної датської і червоної болгарської, а чорно-ряба - до чорно-рябої Данії і даних В. І. Сокола і Л. М. Романова, (1970). Серед чорно-рябої породи за частотою генів спостерігали велику різницю залежно від походження стад. При вивченні поліморфізму ізоферментів, що контролюються, необхідно враховувати зауваження К. Р. Шоу (1965) про те, що включення і поширення мутації ферменту в популяцію не обов'язково пов'язане з будь-якими селекційними перевагами цієї мутації, а, можливо,

зумовлюється генетичним дрейфом, різною швидкістю мутування різних генетичних ділянок, тісним щепленням з генами, які мають селекційне значення, і наявністю поліпептидних субодиниць, що входять до складу двох і більше ферментів, із яких один має селекційну перевагу.
3. Частота генів в локусі амілази у великої рогатої худоби різних порід

Молекулярні форми амілази сироватки крові залишаються прихованими для ока селекціонера, який маркірує генні речовини. Іх концентрація в даній популяції може збільнуватися при відборі тварин за певними господарськими ознаками шляхом прилиття крові іншої породи і зарядом інших причин.

Генетична мінливість таких поліморфних систем сироватки крові може використовуватися для контролю змін у популяції внаслідок селекційного процесу. Однією з можливостей практичного застосування генетично визначених систем сироватки крові є комбіноване їх використання з іншими білковими поліморфними системами і групами крові для доказу вірогідності походження племінних тварин. Кожна система сироватки крові, алелі якої трапляються в одній популяції з певною частотою, дає змогу виключити невірогідного батька при контролі походження.

Така можливість є тим більшою, чим більш гетерогенна популяція щодо цієї ознаки. Вважається, що можливість самостійного використання однієї системи сироватки крові для доказу походження буде найбільш надійною, тому що контролюючий їі ген щеплений з іншими генами. М. Хессельхольт, Б. Ларсен і П. Б. Нільсен (1966) не встановили щеплення генного локусу амілази з іншими генами.

Теоретична можливість виключення неправильного запису про походження тварини може бути визначена за формулою [pg(1-pg)] (Р. Ебертус, 1968), де p - частота генів алеля Am^{B} i g - частота генів алеля Am^{C}.

Відпавідно до розрахунків за цією формулою при використанні даних по амілазі можна виключити по симентальській породі $14,9 \%$, а в окремих стадах від 13,1 до $18,75 \%$, по чорно-рябій 18,74 і по червоній степовій $10,9 \%$ неправильних записів про походження. Л. А. Зубарєва, О. Н. Соломонова, Н. І. Кузнецов (1970) встановили, що при використанні даних но амілазі можна виключити невірогідного батька по холмогорській породі - $18,7 \%$ випадків, ярославській - $17,3-18,0 \%$ і щвіцькій 14,8 - 18,4 , а Ц. Макавєєв (1970) для сірої іскорської породи $17,1 \%$, рддопської - 9,6 , червоної болгарської - 11,5 , симентальської 10,4 , бурої болгарської - 12,3 і софійської бурої - $14,6 \%$ випадків. Таким чином, наші дослідження узгоджуються з даними інших авторів.

висновкй

1. Генетичний поліморфізм амілази сироватки крові у великої рогатої худоби симентальської, чорно-рябої і червоної степової порід, які розводяться на Україні, контролюється двома алельними автосомними кодомінантними генами Am^{B} i $\mathrm{Am}^{\text {C }}$.
2. Алель Am^{B} трапляється з більш високою частотою у всіх досліджених порід. Виявлена міжпородна різниця в частоті алелів амілази.
3. Генетичні типи амілази дають можливість детальніше характеризувати генотип великої рогатої худоби і допомагають підвищити вірогідність при імунологічному контролі походження. За допомогою даних

по типах амілази можна виключити неправильні записи про походження по симентальській, чорно-рябій і червоній степовій породах у 10,90$18,75 \%$ випадків.

nitePATYPA

Букатуру Н. Н., Зубарева Л. А. Использование типов полиморфных белков как тенетических маркеров при межпородном скрещивании крупного рогатого ско-тв:- В сб.: Проблемы генетики, селекции и иммуногенетики животных. М., «Наука», 1972.

Зубарева Л. А., Соломонова О. Н., Кузнецов Н. И. Генетика изоферментов амилазы сыворотки крови крупного рогатого скота.- «Генетика», 1970, т. VI, $\mathrm{N}_{2} 2$.

О лийник Е. Н., Ш адм анов С. И., К орешков В. А. Некоторые особенности наследования типов трансферринов, амилазы и церулоплазминов.- В сб.: Материалы II коиференции молодых ученых по генетике и разведению сельскохозяйственных животных, т. ІІ. Л., 1971.

Провора К. И. Генетичний поліморфізм деяких ферментів у сироватці крові чо́рно-рябої породи.-У зб.: Дослідження по зоотехнії, т. І. Львів, 1970.

Садик А. Ф., Беденко В. Ф. Изучение типов гемоглобина, трансферрина и амилазы у черно-пестрого и пинцгауского скота. - «Генетика», 1972, т. VIII, № 12.

СоколВ. И., Романов В. М. Типи амілази сироватки крові великої poraтої худобн.-У зб.: Генетика і селекція тварин. К., 1969.

Умлкенсон Дж. Изоферменты. М., «Мир», 1968.
Ashton G.' C. A genetic mechanism for «thread protein» polymorphism in cattle. Nature, 1958, V. 182, Nr. 527, pp. 65-66.

Ashton G. C. Serum amylase (thread protein) polymorphism in cattle. Genetics, 1965 , V. 51 , pp. 431-437.

Ashton G. C., J. Francis and J. B. Ritson. Distribution of transferrin, albumin, amylase and haemoglobin genotypes in drougthmaster cattle.

Austral J. Biol. Sci., 1966, V. 19, Nr. 5, pp. 821-829.
Ebertus RJ Untersuchungen über Amylasepolymorphismus in Serum des Rindes. Fortpflanz, Besam. und Aufzucht d. Haustiere, 1968, Bd. 4, H. 4/5, S. 289-295.

Gasparski J. and R. W. Stevens. Bovine serum amylase isozymes in several breds of domestic cattle. Canada J. Genet. and Cytol., 1968, V. 10, Nr. 1, p. 148.

Hesselholt M., B. Larsen and P. B. Nielsen. Studies on serum amylase systems in swine, horses and cattle. Yearbook Royal Veter. and Agric. Colledge, Copenhagen, 1966; 78-90.

Макавеев Ц. Генетичен полиморфизъм на серумната амилаза в българските породи говеда. Генетика и селекция, Год. 3 , № 1, 1970, с. 43-51, София.

Meyer. H. Zum Serumamylasepolymorphismus bei verschiedener Tierarten. Berl.Münchenf tierärztl. Wochenschrift, 1967, 80, 24.

Skadanowska E., K. Tomaszewska-Guszkiewicz and M. Zurkowski. Polymorphism of serum amylase in black-and-white lowland cattle and Polish red cattlé Genétic Polonica 1971, Vol. 12, Nr. 4, pp. 455-457.

Shaw C. R. Electrophoretic variation in enzymes. Science, 1965, 149, Nr. 3687, 936.

[^0]:

