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The article presents the results of research on the study of spatial and temporal variability of
the precipitation erosion factor in the period from 1960 to 2023 within the administrative regions of
Polissya and Forest-Steppe of Ukraine. MEM-spatial variables were able to explain 80.8% of the
variability of the precipitation erosion factor. The ANOVA revealed that 8 canonical axes, which
were extracted after the RDA analysis, were statistically significant. The canonical axes represent
different spatial patterns of variability of the precipitation erosion factor. The contribution of spa-
tial MEM variables to the explanation of the canonical axes is different, which allows us to identify
the hierarchical structure of variability of the main spatial patterns of precipitation in the region.
The canonical axes denoting the main spatial patterns of precipitation erosion variability were cor-
related with soil properties and land cover types. The temporal AEM predictors 4, 17, 25, 29, 32,
39, 44, and 61 were able to statistically significantly predict temporal patterns of precipitation var-
iability within the study area. These temporal predictors were able to explain 25.9% of the varia-
tion in the total matrix of precipitation erosion coefficients. The highest explanatory power of the
AEM predictors was found for the southern and southeastern regions, and the lowest for the west-
ern regions. The forecast for administrative regions was made for the period up to 2060. The spa-
tial and temporal dynamics of the precipitation erosion factor has a complex hierarchical structure,
which can be represented as a set of spatial and temporal patterns with a specific ratio of compo-
nents of different scale levels. In the spatial context, the patterns are a superposition of processes of
broad-, medium-, and detailed-scale levels. The combination of these levels, the nature of spatial
variability, and the correlation with soil and landscape indicators allows us to formulate hypothe-
ses about the relevant processes that generate spatial patterns of precipitation erosion factors. Ob-
viously, there are three groups of factors that cause natural variability in precipitation erosion. The
first group includes factors of geographical nature, the second includes factors caused by soil cover
heterogeneity, and the third includes factors caused by landscape cover heterogeneity. The latter
also includes factors that are the result of anthropogenic transformation of landscapes, primarily
through agricultural activities. The factors of geographical origin are represented by large-scale
patterns, soil factors are represented mainly by medium-scale patterns and to some extent by de-
tailed-scale patterns, and landscape factors are represented mainly by detailed-scale patterns and
to a lesser extent by medium-scale patterns.
Keywords: climate change, spatial patterns, temporal variability, landscape, land cover, soil
erosion
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YV cmammi nagedeno pezynomamu 00CaiodHceHb WoOO0 BUBYEHHS NPOCMOPOBOI Ma 4aco80i Mi-
HAueocmi ghakmopy eposii onadig y nepioo 3 1960 no 2023 poxu y medxncax aOMiHicmpamueHux pati-
onie Ilonicca ma Jlicocmeny Ykpainu. MEM-npocmoposi 3minni 6yau 30amui noscnumu 80,8%
Mminaueocmi koeiyicumy epozusnocmi onadis. ANOVA doszsonuna ecmanosumu, wo cmamucmud-
HO 8IpocioHumu € 8 KaHoHiuHux oceu, aAxi oynu ekcmpaeogani nicia RDA-ananizy. Kanowiuni oci
npeocmasiams pisHi NPOCMOPo6i NamepHu MIHAUBOCMI (akmopy epo3usHocmi onaodis. Brecok
npocmopoeux MEM-3uminnux y noscnenns kanoumiuHux oceil € pisHuM, o 00380A€ GUABUMU i€pap-
XIUHY CMPYKmMypy MIHAUBOCMI 20JI06HUX NPOCMOPOBUX NamepHie onadie y pezioni. Kanowniuni oci
SAKI NO3HAYAOMb 20JI06HI NPOCMOPOSI NAMePHU MIHAUBOCMI epO3UBHOCMI ONadie KOopeno8alu 3
[PYHMOBUMU BILACIUBOCAMU MA Munamu aanowagmmuoco nokpusy. Yacosei AEM-npeduxmopu 4,
17, 25, 29, 32, 39, 44 ma 61 Oynu 30amui cmamucmu4no 8ipocioHo Yaco8i NAmepHUu MIHAUBOCMI
onaois y medcax 0ocniodxcenoi mepumopii. Lli uacosi npeouxmopu o6ynu 30amui noscuumu 25,9%
8apil0BaHH MOMANbHOI mampuyi Koegiyicumis epozusHocmi onadis. Hailbinvwa noschiosanvha
s30amuicms AEM-npeoukmopis 6yna ecmarnosiena 0Jisi nNieOeHHUX Ma NiGOeHHO-CXIOHUX PatioHis, a
Haumenwa — 0ns 3axioHux. [Ipoeno3 no aominicmpamusHux pationax 6ys 3pooaenuli Ha nepioo 00
2060 poxy. IIpocmopogo-uacosa ounamika ghaxmopy epo3usHocmi onadié Mae CKAAOHY IEPAPXIUHY
CMpPYKmMypy, AKa Modice Oymu npeocmasiena K CyKynHicmos npocmoposux ma 4aco8ux namepis 3i
cneyugiyHuM CnieBIOHOWEHHAM CKIA008UX PI3ZHO20 MACUIMAOHO20 DieHA. Y npocmopo8omy KoH-
meKkcmi, namepHu NPeocmasisiloms cod0 Cynepno3uyiio npoyecie WUpoKo-, cepeonbo- ma oema-
JIbHO-MacumabHro2o pienie. Kombinayis yux pienis, xapaxmep npocmopoeoi MiHAUBOCMI ma Kope-
JAYIA 3 TPYHMOBUMU MA JIAHOWADMHUMU NOKAZHUKAMU 00360714€ chopmynosamu 2inomesu npo
8I0N0GIOHI npoyecu, sKi 2eHepyroms NPOCmMoposi namepHu gaxkmopu epozusHocmi onadig. Ouesuo-
HO, WO ICHYE mpu 2pynu axmopis, sKi SUKIUKAIOMb 3AKOHOMIPHY MIHAUBICMb epO3UBHOCHE ONd-
0is. /lo nepwioi epynu nanexcams pakmopu 2eozpaghiunoi npupoou, 0o opy2o0i Haredxcams gakmo-
pu, SAKI GUKIUKAHI HeOOHOPIOHICMIO TPYHIMOB020 NOKPUBY, A 00 Mpemvoi Hanexcamsv ¢axmopu, sKi
BUKIUKAHI HEOOHOPIOHIcmIo 1anowagmuoeo nokpusy. o ocmannbo20 Hanexdcamsv makoxic Qax-
mopu 5Ki € HACTIOKOM AHMPONO2EHHO20 NePeMmBOPeH s TaHOUAPdmis, y nepuly 4epay 4epes CilbCb-
K020cnooapcvky Oisnvhicms. Daxmopu 2eozpaiunozo noxo0HCeHHs NpeoOCmAasneHi WUPOKO-
MacuwmabHumMy — namepHamu, IPYHMOSI akmopu npeocmasieHi  NepesadcHo  CcepeoHbo-
MAcCumabHuMU namepHamu ma nesHow Miporw — 0emaibHO MacumadHumu, a 1anowagpmui gax-
mopu npeodcmaeieni nepeeadcHo 0emanrbHO-MACUmMAabHUMY NAmepHamy ma MeHulo Mipor — ce-
PEOHbO-MACUMAOHUMU RAMEPHAMU.

Knrouosi cnosa: wjiiMaTH4Hi 3MiHM, POCTOPOBI NMaTepHU, YacoBa MIiHJIMBICTh, JaHAWAQT,
IPYHTOBHIi IOKPHUB, €PO3isl IPYHTY

Problem definition. The phenomenon of water erosion represents a significant threat to the
sustainability of agricultural production. Soil erosion can be defined as the detachment and transport
of soil particles by erosive agents, most commonly water and/or wind. It is a natural process, but
human activities, such as agriculture, forestry, mining, and construction, can disrupt or destroy veg-
etation, loosen soil, and significantly increase the risk of soil erosion losses during subsequent rains,
runoff, or storms. The study of spatial and temporal variability of the precipitation erosion factor is
an important problem for solving the problems of agroecological zoning of territories and predicting
the variability of erosion processes in the context of global climate change.

Analysis of recent research and publications. A substantial body of evidence indicates that
climate change will exacerbate the severity of soil erosion in a range of geographical areas (Branni-
gan et al., 2022). Soil erosion results in soil degradation and impairs soil functions, including filtra-
tion, nutrient cycling, water retention, and soil organic matter composition (Telo da Gama , 2023).
It should be noted that erosion causes numerous adverse effects on people and the environment be-
yond agricultural land (Horrigan et al., 2002) and poses a serious threat to the sustainable use of soil
in Europe (Panagos, 2015). The impact of climate change on rainfall erosion activity and the in-
creased risk that these changes may pose to soil erosion processes necessitates an understanding of
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the dynamics of these processes in space and time. As a consequence of an increase in the frequen-
cy of extreme precipitation events, there has been an increase in rainfall erosion in recent years (Di-
odato, 2017). An increase in climatic variability, including intense precipitation, also has an aggra-
vating effect on soil and intensifies erosion processes (Burt et al., 2016) It is thus imperative to en-
sure the continual updating of information pertaining to the factors that regulate erosion processes,
with a view to guaranteeing optimal agricultural management and the implementation of preventive
measures in areas characterised by an elevated risk of erosion. It is imperative to develop a reasona-
ble forecast of erosion changes in the coming decades in order to facilitate effective land manage-
ment and the conservation of ecosystems. This is particularly crucial given the general expectation
of increased precipitation intensity in the context of global warming (Biasultti et al., 2015) which is
why assessing the risk of soil loss and its spatial distribution is one of the key factors for successful
erosion assessment (Parveen et al., 2019). As soil erosion is difficult to measure at large scales, soil
erosion models are important assessment tools at regional, national, and European levels (Parveen
et al., 2019, Zymaroieva et ai., 2021). Soil erosion prediction models are effective tools to help
guide and inform soil protection planning and practice (Yin et al., 2015). These models encompass
a multitude of analogous and disparate elements, yet they are unified by a common denominator:
the rainfall erosion factor (R). This factor serves to quantify the potential for rainfall to precipitate
soil loss from slopes, and it is regarded as one of the most pivotal elements in the estimation of soil
erosion. Of all the erosion factors, rainfall erosion and factors pertaining to land cover and land use
types are regarded as the most dynamic (Panagos et al., 2016). Climate change can lead to changes
in rainfall characteristics and is thus a major challenge for soil conservation (Meusburger et al.,
2012). Nevertheless, the RUSLE methodology necessitates the utilisation of precise precipitation
data and the accurate computation of each storm erosion index to ascertain an average long-term
rainfall erosion rate. This process is inherently arduous (Diodato et al., 2006).

Natural complexes are complex systems comprising a multitude of interacting objects across a
range of spatial and temporal scales. The characterisation of these scales represents a crucial step in
the comprehension and prediction of the consequences of alterations in the processes that regulate
these systems. It employs mathematical and statistical techniques that permit the quantification of
spatial and temporal complexity and are sufficiently robust to accommodate any type of sampling
design. The spatial patterns of natural phenomena can be attributed to a multitude of endogenous
and exogenous processes occurring at varying spatial scales (Vaclavik et al., 2012). The analysis of
combinations of processes and scales necessitates the utilisation of mathematical tools that are ca-
pable of accounting for or modelling large-scale ordered patterns (Dray et al., 2012). Among the
statistical methods, the most suitable for analysing such patterns are Moran's eigenvector maps
(MEMs) (Dray et al., 2006) and their original form, neighbourhood principal coordinate matrices
(Borcard et al., 2002). MEMs are derived from the theory of spectral graphs and are capable of
characterising a wide range of autocorrelation structures based on the study design, specifically the
distances between sample points or time (Dray et al., 2006). In other words, it is a spectral decom-
position of the spatial (or temporal) relationships between sample points (or dates). The aforemen-
tioned decomposition generates eigenfunctions, which are novel orthogonal variables that can be
employed in statistical models as explanatory variables representing the spatial or temporal relation-
ships between the study sites (Brind” Amour et al., 2018).

Task definition. The modelling of R-factor variability over time is primarily concerned with
the identification of a time trend, whereas the modelling of time variability is focused on the spatial
interpolation of this indicator (Ma et al., 2014). The issue of the hierarchical organisation of the
spatial and temporal variability of the R-factor is not even addressed. In light of the aforementioned
shortcomings, the present study aims to elucidate the hierarchical structure of spatial and temporal
variability of the R-factor within the Polissya and Forest-Steppe regions of Ukraine.

Methods of research. This study investigates the spatial and temporal variability of the pre-
cipitation erosion factor (R-factor) within ten administrative regions of the north and northwest of
Ukraine. The region encompasses both the Polissya and Forest-Steppe geographical zones. Prior to
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the 2015-2022 reform of Ukraine's administrative and territorial structure, the environmental char-
acteristics were averaged within the administrative regions. This is due to the fact that the area of
the traditional rayons is smaller and more ecologically homogeneous than that of the new adminis-
trative units.

The RUSLE model was employed for the estimation of annual soil loss. The RUSLE model
was developed with the objective of predicting long-term average annual soil loss. The RUSLE
equation is wused to calculate the average annual erosion expected on field slopes
(Wischmeier et al., 1978):

A=R+K +LS + C +P,

where the term "A" represents the calculated spatial average soil loss and average temporal soil loss
per unit area, expressed in the units selected for "K" and for the specified period designated for "R."
In practice, the units chosen for A are typically tons per hectare per year (t ha=/year), for R it is the
precipitation-runoff erosion factor, which is the precipitation erosion rate plus a factor for any sig-
nificant runoff from snowmelt, expressed in MJ mm ha* h™ per year, and for K it is the soil erosion
factor, which is the soil loss factor per unit of erosion index for a given soil measured on a standard
plot, defined as a 22. The slope length factor (L) is defined as the ratio of soil loss from the length
of the field slope to the soil loss from a standard plot measuring 22 m?. In this example, the slope
length is 1 m, the slope gradient is 9%, and the soil loss is expressed in t ha* MJ mm™. A one-
metre-long slope under identical conditions; S is the slope steepness factor, representing the ratio of
soil loss from the field slope gradient to soil loss from a 9% slope under otherwise identical condi-
tions; C is the cover management factor, representing the ratio of soil loss from an area with a given
cover and management to soil loss from an identical area under cultivated continuous break; P is the
practical support factor, representing the ratio of soil loss with support such as contouring, strip
mowing or terracing to soil loss under straight farming up and down the slope. The L and S factors
represent the non-dimensional effects of slope length and steepness, respectively, whereas the C and
P factors represent the non-dimensional effects of cropping and management systems, as well as
erosion control practices. In general, the parameters of the RUSLE equation were classified into
three categories: erosivity, erosion sensitivity, and management factors. All of the aforementioned
parameters were determined based on geomorphic and precipitation characteristics (Zeri-
hun et al., 2018).

In the present study, precipitation data for a period of 64 years (1960-2023) were employed to
calculate the rainfall erosivity factor (R-factor) using the following equation (Wischmei-
eretal., 1978):

= (15log I(Ei:—xl 0.08188)
LLatogup —L
R=Zl.?35xlﬂ P

i=1

where R is the rainfall erosivity factor (MJ mm ha=* h™! per year); Ri is monthly precipitation (mm);
P is annual precipitation, mm.

The functions provided by the adespatial package (Dray et al., 2018) were employed for the
multiscale analysis of spatial and temporal multidimensional data. The spatial neighborhoods be-
tween points whose coordinates correspond to the centroids of administrative districts are managed
in objects of the spdep class with the designation "nb". The objects of this class correspond to the
concept of connectivity matrices and can be represented by an unweighted graph. A variety of func-
tions are available for the creation of nb objects from geographic coordinates of sites. The ades-
patial package provides a range of tools for the construction of spatial predictors that can be incor-
porated into multivariate analysis. Moran eigenvector maps (MEMSs) offer the most flexible struc-
ture for the modelling of spatial and temporal patterns.

WorldClim 2, based on a dataset of spatially interpolated monthly climate data for global land
areas with a very high spatial resolution (approximately 1 km?), was used as a spatial sample of
precipitation in the study area (Cedrez et al., 2018, Fick et al., 2017). WorldClim 2 raster models
were generated for the period 1960-2023. Data on the spatial variability of soil cover in the region
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were obtained from the Harmonized World Soil Database (Version 2.0) (Aksoy et al., 2023). The
soil properties were obtained from the SoilGRIDS database (www.isric.org/explore/soilgrids) using
the geodata package (Hijmans et al., 2024). Information on landscape cover types was obtained
from the GlobCover database land Cover Maps (GlobCover)
(https://due.esrin.esa.int/page_globcover.php).  Descriptive  statistics  were calculated in
StatSoft 12.0.
Presentation of the main research findings
Spatial variation of the rainfall erosivity coefficient

The rainfall erosivity coefficient ranged from 179.9+114.7 (in 2015) to 616.0 +468.9
(in 1974) MJ mm hat h* per year. The MEM-spatial variables were able to explain 80.8% of the
variability in the precipitation erosion coefficient (F = 11.4, P < 0.001). The ANOVA revealed that
8 canonical axes that were extracted after the RDA analysis were statistically significant (Fig. 1).
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Fig. 1. Spatial variability of the canonical axes selected after conditional redundancy analysis with spatial MEM
variables as predictors: RDA1 explains 50.7% of the variation in the precipitation erosion coefficient (F = 211.4,
P <0.001), RDA2 explains 14.6% of the variation in the precipitation erosion coefficient (F = 35.9, P < 0. 001),
RDA3 explains 14.1% of the variation in the precipitation erosion coefficient (F = 34.7, P < 0.001), RDA4 ex-
plains 6.0% of the variation in the precipitation erosion coefficient (F = 13.9, P < 0. 001), RDA5 explains 2.8% of
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the variation in the precipitation erosion coefficient (F = 7.0, P = 0.002), RDAG6 explains 1.4% of the variation in
the precipitation erosion coefficient (F = 3.9, P = 0. 006), RDA7 explains 1.1% of the variation in the precipita-
tion erosion coefficient (F = 3.2, P = 0.03), RDAS8 explains 0.7% of the variation in the precipitation erosion coef-
ficient (F = 2.5, P = 0.05)

The canonical axes represent different spatial patterns of variability of the precipitation ero-
sion factor. The RDAL axis differentiates the plain part of the region from the foothill part. The
RDAZ2 axis indicates differences in the dynamics of erosion processes in the north, east, and west of
the region, on the one hand, and in the center and south of the region, on the other. Axis RDA3
draws attention to the spatial pattern when the dynamics of the precipitation erosion factor in the
east and west coincide and are opposite to the rhythm of the process in the rest of the territory. Axis
RDA4 indicates synchronized patterns of the precipitation erosion factor in the west, northeast, and
center in the north, which are opposed to the dynamics in other parts of the region. Axis RDAS con-
trasts the dynamics of erosion processes in the northeast and southwest on the one hand and the rest
of the region on the other. The RDAG6 axis distinguishes the dynamics in the north and south of the
region from those in its central part. The RDA7 and RDAS8 axes indicate the presence of complex
detailed—scale patterns of variability in the precipitation erosion factor.

The contribution of spatial MEM variables to the explanation of the canonical axes is differ-
ent, which allows us to identify the hierarchical structure of variability of the main spatial precipita-
tion patterns in the region (Fig. 2). The RDA1 and RDA2 axes represent the large—scale component
of precipitation variability. In the RDAL variation, the large—scale component is predominant.
RDAL1 indicates the differentiation of patterns of the precipitation erosion coefficient in the meridi-
onal direction with the allocation of the eastern and western sectors of the region. RDA1 demon-
strates autocorrelation in time with a lag of 5 years (r = -0.19, P = 0.05). RDAZ2 differentiates the
region into northern, eastern, and western sectors and central and southern sectors. RDA2 shows
autocorrelation in time with a lag of 3 years (r = -0.22, P = 0.03). The variation of the RDA3 axis is
dominated by large— and small-scale spatial components. This axis differentiates the dynamics of
the precipitation erosion coefficient of the eastern and extreme western (foothill) parts of the region,
on the one hand, and the other part of the region, respectively. RDA3 demonstrates autocorrelation
in time with a lag of 8 years (r = -0.15, P = 0.05).

The variation of the RDA4 axis includes large—, medium—, and detailed-scale spatial compo-
nents, but the medium-scale component predominates. This axis differentiates between the dynam-
ics of precipitation erosion in the northern, central, and far western parts of the region on the one
hand and in the other part of the region. RDA4 demonstrates autocorrelation in time with a lag of 1
year (r = +0.13, P = 0.05). The variation of the RDA5 axis is dominated by large— and medium—
scale spatial components. This axis differentiates precipitation dynamics in the eastern and south-
western parts on the one hand and in the western part and diagonal from northwest to southeast on
the other hand. RDAS shows autocorrelation in time with a lag of 1 year (r =-0.38, P <0.01) and a
lag of 2 years (r = +0.35, P < 0.01). The variation of the RDAG axis represents the large—, medium—
, and detailed—scale spatial components. This axis differentiates the dynamics of precipitation ero-
sion from the axis of symmetry along the longitudinal direction. RDA6 demonstrates autocorrela-
tion in time with a lag of 7 years (r = -0.21, P < 0.01) and a lag of 12 years (r = +0.22, P = 0.02).
The variation of the RDA7 axis includes broad— and detailed—scale spatial components, but the
broad-scale component is significantly dominated. This axis represents a complex island—like pat-
tern of precipitation erosion variability. RDA7 shows autocorrelation in time with a lag of 3 years (r
= 0.24, P = 0.02) and a lag of 13 years (r = —0.25, P = 0.01). The variation of the RDAS8 axis in-
cludes large—, medium—, and detailed—scale spatial components, but the medium-scale component
predominates. This axis also presents a complex island-like pattern of precipitation erosion varia-
bility. RDAS8 shows autocorrelation in time with a lag of 9 years (r =-0.23, P = 0.01).
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Fig. 2. Scalogram of the variability of the canonical axes selected after conditional redundancy analysis with
spatial MEM variables as predictors. The abscissa axis is the order of spatial MEM variables (1 is the most
broadly scaled variable, 83 is the most finely scaled variable). The MEM variables were conditionally grouped
into broad-scale (1-10), medium-scale (11-20), and detailed—scale (21-83).

The role of environmental determinants in the formation of spatial patterns of rainfall erosion

The canonical axes denoting the main spatial patterns of precipitation erosion variability were
correlated with soil properties and landscape cover types (Table 1).
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1. Correlation between the redundancies identified after conditional analysis with spatial MEM variables as predic-
tors and ecological properties of the territories (correlation coefficients are statistically significant for P < 0.05)

. Canonical variables
Variables
RDA1 | RDA2 | RDA3 | RDA4 | RDA5 | RDAG6 | RDA7 | RDAS
Soil properties
Organic matter - 0.32 - -0.27 - - -0.47 -
Clay - -0.73 - -0.41 - -0.16 - -
Sand - 0.71 - 0.30 - 0.30 -0.14 0.15
Silt - -0.60 - -0.18 - -0.37 0.19 -0.27
Types of landscape cover (GlobCover)

Rainfed croplands 0.16 -0.61 - -0.40 -0.15 -0.19 - -
Mosaic Croplands 0.47 -0.25 - - 0.17 -0.23 - -0.14
Mosaic vegetation -0.21 -0.35 0.42 -0.26 0.23 - - -
gf(s:dsg:;)adleaved deciduous for- 037 0.48 014 B B 0.20 3 3
]Ei)lroessetd(:%encil)eleaved evergreen B 0.33 3 0.47 B 015 3 017
8p§nm;1eedleleaved deciduous forest B 0.49 3 037 0.18 031 3 3
needleleaved forest (- 5m) - jost | - |od | - |0z | 0| 0w
Mosaic grassland -0.55 - - -0.21 - - 0.29 -
Herbaceous vegetation -0.41 - - - - - 0.19 -0.17
Sparse (< 15%) vegetation 0.17 -0.45 - -0.31 - - - 0.16
Grassland or woody vegetation - - - 0.17 - - - -
Artificial surfaces - - - - - - - -

The variation in RDAL was independent of soil properties, but this axis had a negative corre-
lation with the proportion of broadleaf forests and mosaics of herbaceous and shrubs in the land-
scape cover. This axis had a positive correlation with the proportion of agricultural land. RDA2 was
positively correlated with soil organic matter content and sand content, but negatively correlated
with clay and silt content in the soil. This axis increased with an increase in the proportion of broad-
leaf, coniferous, or mixed forests in the landscape cover structure. RDA2 decreased with an in-
crease in the proportion of agricultural crops or sparse vegetation cover. RDA3 did not depend on
soil properties. This axis was positively correlated with the proportion of herbaceous and shrub mo-
saic vegetation and negatively correlated with broadleaf forests. RDA4 was negatively correlated
with soil organic matter, clay, and sand content and positively correlated with sand content. This
axis decreased with increasing proportions of rainfed crops and a mosaic of herbaceous vegetation
and shrubs, but increased with increasing proportions of coniferous, broadleaf, and mixed forests.
RDAGS did not correlate with soil properties. This axis increased with increasing proportion of mo-
saic with crops, but decreased with increasing proportion of coniferous and mixed forests. RDAG6
was positively correlated with sand content but negatively correlated with clay and silt content. This
axis decreased with increasing proportions of agricultural crops, but increased with increasing pro-
portions of broadleaf, mixed or coniferous forests. RDA7 was positively correlated with silt content
but negatively correlated with organic matter and sand content. This axis was positively correlated
with the proportion of herbaceous and shrub mosaic vegetation and negatively correlated with the
proportion of mixed forests. RDA8 was positively correlated with soil sand content and negatively
correlated with silt content. This axis was negatively correlated with the proportion of agricultural
land and positively correlated with the proportion of coniferous and mixed forests.
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Temporal patterns of precipitation erosion variability for the forecast

The temporal AEM predictors 4, 17, 25, 29, 32, 39, 44, and 61 were able to statistically sig-
nificantly predict temporal patterns of precipitation variability within the study area (Fig. 3). These
temporal predictors were able to explain 25.9% of the variation in the total precipitation erosion
coefficient matrix (F = 3.8, P < 0.001). The AEM predictors were able to explain between 13 and
94% of the variability in rainfall erosion within a given administrative region.
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Fig. 3. AEM-predictors 4, 17, 25, 29, 32, 39, 44 and 61 were able to statistically significantly predict temporal
patterns of precipitation variability within the study area

The highest explanatory power of the AEM predictors was found for the southern and south-
eastern regions, and the lowest for the western regions (Fig. 4).
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Fig. 4. Spatial variation of the coefficient of determination of models of rainfall erosion variability with temporal
AEM variables as predictors

The AEM predictors represent regular oscillatory processes, so they can easily be extended
into the future, and thus can be used to make a forecast of the dynamics of precipitation erosion in
the near future. The forecast for administrative districts was made for the period up to 2060 (Fig. 5).
Spatial slices of precipitation variability for demonstration purposes were made for 2040 and 2060
(Fig. 6). In 2040, the zone of minimum precipitation erosion will be located in the central and
southeastern parts of the region. In 2060, the overall level of erosion will be lower, and the zone of
localized minimum precipitation erosion will be spread throughout the east and center of the region
(Fig. 7).
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Fig. 5. Observed amount of precipitation erosion coefficient and estimated precipitation erosion coefficient based
on a regression model with time AEM variables as predictors for the period 1960-2023 and forecast to 2060: a —

Nizhyn district of Chernihiv region; b — Bilohirsk district of Khmelnytskyi region; ¢ — Dubno district of Rivne
region; d — Vinnytsia district of Vinnytsia region.
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Discussion

The pattern of precipitation and its amount determine the erosive impact on the soil. The
spatial and temporal dynamics of the precipitation erosion factor has a complex hierarchical
structure, which can be represented as a set of spatial and temporal patterns with a specific ratio of
components at different scales. In the spatial context, the patterns are a superposition of processes
of large-, medium-, and detailed-scale levels.

The combination of these levels, the nature of the spatial variability, and the correlation with
soil and landscape indicators allows us to formulate hypotheses about the relevant processes that
generate spatial patterns of rainfall erosion factors. Obviously, there are three groups of factors that
cause natural variability in precipitation erosion. The first group includes factors of geographical
nature, the second includes factors caused by soil cover heterogeneity, and the third includes factors
caused by landscape cover heterogeneity. The latter also includes factors that are the result of an-
thropogenic transformation of landscapes, primarily through agricultural activities.
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Fig. 6. Spatial variation of the precipitation erosion coefficient forecast in 2040 (a) and 2060 (b)
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Geographical origin factors are represented by large-scale patterns, soil factors are represent-
ed mainly by medium-scale patterns and to some extent by detailed-scale patterns, and landscape
factors are represented mainly by detailed-scale patterns and to a lesser extent by medium-scale
patterns. For example, RDAL, 3, 5 do not correlate with soil properties and are mostly represented
by large-scale patterns, which indicates that they are generated mainly by factors of geographical
origin.
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Fig. 7. Forecast of the spatial variation of the trend of changes in the precipitation erosion coefficient as a % of
the average value of the forecast (2024—-2060) to the average value of the observed values (1960-2023).

In fact, RDA1 distinguishes between plains and foothill areas, RDA3 distinguishes between
eastern and western zones of the region, which corresponds to meridional zonation, and RDA5 most
of all indicates a pattern that can be linked to latitudinal zonation. Geographical variability, includ-
ing geographical zonation, is a coherent correlation of different natural complexes, including cli-
mate, soils, and vegetation. RDA2 is strongly correlated with various soil indicators, and this axis
actually distinguishes between the ecological and geographical conditions of Polissya and Forest-
Steppe. Geological and geomorphological factors are also involved in the generation of the charac-
teristics of these bioclimatic zones, which is why the soils of Polissya are represented mainly by
sandy soils, and the soils of the Forest-Steppe are clay soils.

It should be noted that clay and loamy soils are more favorable for agriculture, so RDAZ2 is al-
so strongly correlated with the proportion of agricultural soils, which emphasizes the significant
difference between the Forest-Steppe, with a much higher proportion of agricultural land, and
Polissia, with a much lower proportion. It should be noted, however, that Polissia retains significant
areas of coniferous, mixed, and deciduous forests, which is also reflected in the correlation structure
of RDA2. The RDA4 axis denotes the central northern zone of the region, where high sand content
in the soil is accompanied by lower organic matter and clay and silt content. It should be noted that
in other zones of Polissia, the high content of organic matter in the soil is due to its accumulation in
bog soils. In the Forest-Steppe, the high content of organic matter in soils is due to the predomi-
nance of humification over mineralization and the high ability of soils to immobilize organic matter
due to their favorable grain size distribution. The RDA4 axis indicates a zone with a high propor-
tion of coniferous or mixed forests. It should be noted that sandy soils with a low organic matter
content have special thermal properties, which directly affects their interaction with the atmosphere,
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which affects the processes of evaporation and precipitation. Naturally, changes in the precipitation
rhythm cause variability in the precipitation erosion factor.

The temporal predictors indicate a complex temporal nature of the variability of the precipita-
tion erosion factor. It should be noted that the AEM-1 variable indicates a monotonic trend in the
change of the corresponding indicator, but this predictor was not statistically significant in explain-
ing the variability of the erosion factor over the study period. Thus, the hypothesis about the direc-
tional nature of changes in precipitation and, accordingly, the precipitation erosion factor, due to
global climate change, was not confirmed. The dynamics of the erosion factor can be represented as
a superposition of oscillatory components of different frequencies and rhythmic changes in ampli-
tude over time. These components have been formally identified, but their meaningful interpretation
requires a separate study. Nevertheless, the periodic nature of the temporal predictors of erosion
factor variability allows them to be used to predict this indicator in the future.

It should be noted that the forecasting approach has the disadvantage that the forecast esti-
mates somewhat smooth out extreme precipitation forecasts, to which the precipitation erosion fac-
tor estimates are very sensitive. The precipitation peaks are well modeled by the regression model,
but the forecast values of these peaks are somewhat underestimated. Therefore, the resulting fore-
casts should be considered to be somewhat conservative, although the general trend of the process is
reflected very well by the model results. An important result is that in the near future, a decrease in
precipitation erosion can be expected in the southeastern zone of the region, and an increase in pre-
cipitation erosion can be expected in the northwestern part of the region.

Conclusion

The spatial and temporal dynamics of the precipitation erosion factor has a complex hierar-
chical structure, which can be represented as a set of spatial and temporal patterns with a specific
ratio of components of large-, medium-, and detailed-scale scale levels. The factors of variability of
the precipitation erosion factor of geographical origin are represented by large-scale patterns, soil
factors are represented mainly by medium-scale patterns and to some extent by detailed-scale pat-
terns, and landscape factors are represented mainly by detailed-scale patterns and to a lesser extent
by medium-scale patterns. The temporal predictors indicate a complex temporal nature of the varia-
bility of the precipitation erosion factor. In the short term, a decrease in precipitation erosion can be
expected in the southeastern zone of the region within the Forest-Steppe, and an increase in precipi-
tation erosion can be expected in the northwestern part of the region within Polissya.
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